phone icon 844-256-Bolt
customer banner

24/7 PHONE SUPPORT

BOLT™ Fiber Optic Services provide 24/7 phone support to all customers (toll free in the United States).

Call BOLT™ Fiber Toll Free at 844-256-BOLT™ (844-256-2658) or locally at 918 256 9350.

FREQUENTLY ASKED QUESTIONS

Q: What is bandwidth?

A: In a network, bandwidth (what engineers call bitrate) is the ability to carry information. The more bandwidth a network has, the more information it can carry in a given amount of time. Networks with high bandwidth also tend to be more reliable because fewer bottlenecks disturb the flow of information.

Q: How much bandwidth – or information delivered by bandwidth – do we need?

A: The amount of bandwidth we need grows every year. Worldwide Internet traffic roughly doubles every two years and has been increasing even faster lately because of smartphone use. The biggest growth has been for video – traditional pay TV, over-the-top or Internetbased video, and video communications. By the end of 2013, network equipment vendor Cisco noted that traffic had reached levels not expected until 2020 – seven years ahead of schedule. Video requires not only extra bandwidth but also extra reliability. The smallest delay in data transmission can result in distorted views. More video is available than ever before, and people are watching video on more screens at once. In addition, video formats are becoming more bandwidth-intensive. HDTV can require 8 megabits per second (Mbps) or even more for fast action such as in sporting events, with MPEG-4 compression technology. So-called 3D immersive HDTV – already used in some academic and industrial settings for telepresence – requires between 50 Mbps and 300 Mbps. 4K video, which has four times the pixels of today’s best-quality HDTV broadcasts, requires 16 to 32 Mbps even with the new HEVC compression, depending on how fast the screen action is and how much of the screen is taken up by fast-moving objects.

Q: What about other kinds of data?

A: Bandwidth requirements for many kinds of data are exploding. For example, think about uploading photos to a cloud storage facility such as iCloud. Digital cameras can create larger and larger images; 30 megabytes is not uncommon. And amateur HD video cameras use about 10 gigabytes per hour of video – the equivalent of 300 of those 30 MB still images. In health care, the medical images produced by equipment such as CT scanners are a hundred times larger than camera images, and more. Business and science have both entered the era of big-data applications that collect and analyze data on massive scales. Today’s big-data applications range from consumer pricing models to DNA sequencing to particle physics to control of electrical grids. Big data doesn’t work without big bandwidth. A DNA sequencer produces enough data to monopolize a 2.5 Gbps connection.

Q: Can’t copper carry high bandwidth?

A: Copper’s capacity is far less than fiber’s. It can support high bandwidth for only a few hundred yards. The longer a signal travels on copper, the lower the bandwidth. Optical fiber is unique in that it can carry highbandwidth signals over enormous distances. Fiber uses laser light to carry signals. Under some circumstances, a signal can travel 60 kilometers (36 miles) without degrading enough to keep it from being received. The international minimum standard is 20 kilometers (12 miles). Fiber is also far better able to support upstream bandwidth – that is, from a user to the network.

Q: What’s the difference between upstream and downstream bandwidth, and why is it important?

A: In the debate about FTTH versus copper-based broadband, people tend to argue in terms of downstream bandwidth because most users have needed more
Fiber downstream bandwidth than upstream – especially for bringing video entertainment into their homes. But emerging consumer uses such as home video uploads, cloud storage, distance learning, video communication and telemedicine may require as much upstream bandwidth as downstream. Small businesses, often homebased, may need upstream bandwidth as well – consider a wedding photographer sending proofs by email to clients. Businesses now often copy all their working data files for safekeeping to a remote computer center.

Q: What about wireless? I hear 4G wireless can provide 54 Mbps. In Singapore, there’s a wireless carrier boasting 300 Mbps!

A: That’s the potential bandwidth shared by all users connected to a cellular antenna. A wireless user might get high speeds for a moment or two if no one else is around, but average wireless speeds, even for 4G, are similar to those for DSL. Wireless broadband depends on fiber to move information to and from cell towers. Even so, each antenna can support only a finite number of cellular signals. Cellular data traffic grew 300-fold from 2006 to 2013 and will grow another sixfold by 2017. Providers severely limit wireless data, encouraging or forcing customers to use Wi-Fi connections instead of cellular networks for data. Those Wi-Fi connections, in turn, work best when they can quickly offload data to a fiber network. A typical cellular data plan allows 3 or 4 gigabytes per month. Use your phone to view video, and you quickly run over the limit.

Q: What exactly makes fiber “future proof”?

A: The equipment used to send light signals over optical fiber keeps getting better. So equipping an existing fiber network with new electronics and with lasers that pulse light faster, or lasers that use different wavelengths of light, can vastly increase available bandwidth without changing the fiber itself. New electronics are very cheap compared with the original cost of laying the fiber. At the customer end, the system can be designed so that customers themselves can simply pull an old unit out and plug a new one in. Therefore, once fiber has been deployed, network operators can keep increasing bandwidth as needed at very little cost.

Q: How long has fiber optic technology been in use?

A: Fiber optic cable is the foundation of the world’s telecommunications system. It has been used for more than 30 years to carry communications traffic from city to city and from country to country. Almost every country has some fiber optic cable, delivering services reliably and inexpensively. The first time fiber delivered a signal directly to a home (in Hunter’s Creek, Fla.) was more than 25 years ago.

Q: All providers seem to claim they have fiber networks. What’s different about fiber to the home?

A: Don’t be fooled! It is true that most cable and FTTN (DSL) networks use fiber. In these networks, the fiber carries the signal close enough to homes so that copper can carry it the rest of the way. However, this approach requires expensive, difficult-to-maintain electronics at the point where fiber meets copper. (These electronic devices use a great deal of power and are quite sensitive to lightning strikes. Even the cost of bringing electric power to them can be huge, depending on where they are located.) The available bandwidth is far less than in an all-fiber network. And most of these halfway approaches do not allow symmetrical bandwidth – cable and DSL systems generally can’t upload information as fast as they can download it.

Q: Isn’t a network with some fiber good enough?

A: It may be fine to send emails, download songs or share family photos. If you want to log on to the corporate LAN from home and work effectively, or run a homebased business, you’ll need more. And what about
uploading uploading a high-def video of your child’s football game, or sitting down to dinner virtually with family members a thousand miles away?

Q: Why does it matter how close to the home fiber comes?

A: With copper cable, bandwidth drops precipitously with distance. The most recent expedient, vectored DSL, allows 50 Mbps downstream for as far as 1,800 feet under ideal conditions. It won’t work on very old copper wiring, its upstream bandwidth is limited and it requires expensive electronics. However, it is touted as an interim solution for network builders that cannot afford FTTH. A new technology, G.fast, is being fieldtested now; under ideal conditions and with vectoring (crosstalk cancellation), G.fast is expected to provide 500 Mbps symmetrical bandwidth up to 300 feet from a fiber node. G.fast may prove to be an excellent solution for retrofitting apartment buildings with fiber to the basement (as long as those buildings already have good internal copper wiring), but it requires bringing fiber very close to customer premises and is still limited in comparison with true fiber to the home.

Q: With cable and DSL, there’s often a gap between advertised and actual bandwidth. Is that true for fiber?

A: No. Cable, DSL and even wireless networks are usually heavily oversubscribed – that is, providers promise users more than the total amount of available bandwidth because they know all users aren’t going full throttle most of the time. As a result, networks slow down during periods of heavy use, such as when teenagers come home from school. Copper networks are also more subject to speed degradation due to the condition of the wiring. Fiber has enough bandwidth and reliability that providers can guarantee high speeds with little or no oversubscription. If a fiber network is designed properly, users will always get the speeds that are advertised – or better. Data published by the FCC in June 2014 showed that, on average, fiber-to-the-home services delivered 113 percent of their advertised speeds.

Q: Is FTTH technology expensive?

A: In new construction, fiber costs about the same as copper to build, and it costs much less to operate and maintain. Building fiber to the home is expensive only when compared with not building a new network – that is, with making minor tweaks to an existing copper network. The problem is that these less-expensive solutions don’t meet users’ needs. In the last few years, the flood of video content has outrun the ability of older copper technologies to handle bandwidth demands. In many parts of the world, providers shut off or slow down service or impose prohibitive fees for customers who exceed monthly bandwidth caps. Customers don’t like these restrictions, and they don’t appreciate being called “bandwidth hogs” for using services they have paid for. In addition, it’s not clear that providers save money by failing to meet users’ needs because limiting bandwidth means limiting revenue potential as well.

PAY AND/OR VIEW BILLS ONLINE

BOLT™ Fiber Optic Services offers residents an easy and convenient method to view and pay bills anytime online.

NOW OFFERING ACH!

AutoPay Sweepstakes Official Rules can be found here.

EASY AND FAST

“One Time Pay,” View bill and pay online with One Time Pay, no registration required (payment information is not retained).

SAFE AND SECURE

Rest assured that your information is kept confidential and is 100% secure, backed by the highest standards in security today.

ECO-FRIENDLY

Paying online reduces paper use and is an easy way to help the environment. You’ll save natural resources like trees, and gas, and reduce your carbon footprint.

HAVE A QUESTION?

You can reach us at 844-256-BOLT™ (844-256-2658) or you can email your questions to our Billing Department.

REPORT AN OUTAGE

Call BOLT™ Fiber Toll Free at 844-256-BOLT™ (844-256-2658) to report all outages.

 

Please note if you have not established a BOLTfiber.net email address you will need to contact customer care.  If you have already established an email address with BOLTfiber.net then follow the instructions below to setup email on your mobile device.


 

iphone – 

To Setup email on an iPhone please follow these instructions:

1) Choose “Other” from Mail – Add Account
2) Choose “Add Mail Account”
3) Enter your account information
4) Choose “IMAP” and enter all of your account information again. The incoming mail server Host Name should be mail.rectec.net. Be sure to scroll down and enter all information. Make sure your entire email address is entered as your username.
5) The outgoing email server Host Name will be mail.rectec.net
6) Choose “Save”
7) Choose “Done”

 


 

Android – 

To Setup email on an android device please follow these instructions:

1) Select Email
2) Select “MORE”
3) Select “Settings”
4) Select “+ Add account”
5) Enter your username (email address) and password, then select “NEXT”
6) Select “IMAP ACCOUNT”
7) Confirm your Email address and Username are the same. Make sure the IMAP Server is “mail.rectec.net” then select “NEXT”
8) Confirm the SMTP server is set to “mail.rectec.net”, then select “DONE”.

 


Should you have any problems logging into your email account please do not hesitate to contact us anytime.

Click on this link, for support if instructed by BOLT Support.